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The linear problem of the reflection of a beam of monochromatic internal waves at a rigid inclined wall in an exponentially stratified 
liquid with viscosity and diffusion is considered. In such a medium there is, as well as the reflected wave, a boundary-layer flow 
at the plane with split spatial length-scales for the velocity and density variation. Viscosity and diffusion restrict the limiting value 
of the geometrical compression coefficient of the beam. The solution has no singularities at critical angles of reflection. Calculations 
for the reflected beam and boundary flow are performed for an incident beam radiated by a point mass source. 

Modern models ot! internal waves have been developed for plane waves filling the whole of space 
[1, 2] and spatially localized wave beams which are the fundamental type of motion in viscous media 
[3, 41. 

When wave beams are reflected in an ideal exponentially stratified liquid, geometrical compression 
causes the wave an~tplitudes to become singular at critical angles at which the reflected wave runs along 
the inclined base [5, 6]. Similar effects are also observed in the reflection of the wave field with a complex 
frequency composition. In an ideal liquid, without the use of the traditional Boussinesq approxima- 
tion, as well as the geometrical compression there is also distortion of the spatial spectrum of the incident 
wave [7]. 

Because the mechanisms for the development of instability in stratified flows depend on the fine 
structure of the velocity and density profiles, there is great interest in investigating the problem of the 
reflection of beams of internal waves taking viscosity and diffusion into account. Because of the effects 
of distsersion (the difference between the coefficients of molecular diffusion and kinematic viscosity) 
the diffusivity and dynamic boundary layers formed at the reflecting surface can be characterized by 
different length-scales: this occurs in slow boundary flow, induced diffusion at an inclined wall [8], and 
in a laminar boundary layer in a continuously stratified liquid [9]. 

1. G E N E R A L  RELATIONS FOR  THE R E F L E C T E D  FIELD 

Suppose that in an incompressible viscous linearly-stratified liquid an infinite rigid plane is situated 
at an angle 9 to the horizontal, and that a beam of monochromatic internal waves is incident on it. A 
Cartesian system of coordinates (x, y, z) is connected to the liquid with the z axis directed opposite to 
the acceleration due to gravity. We consider a two-dimensional problem in which every quantity is 
independent of the y coordinate. The linearized hydrodynamic equations in the Boussinesq approxi- 
mation and in the 'presence of saline diffusion can be written in the form [10] 

~ =_lO.._p.P+vA~x, Ou t = 1 OP ~ V A ~ z _ g  s (1.1) 
bt P0 3x 3t P0 bz 

a~x ~----~ =0, ~s ~x + 3Z -~ :OAs+~,  p:po(l-A+S) 
Here (ux, %), P and s are the velocity components, pressure and dimensionless salinity, which includes 

the saline compressibility coefficient, v and D are the kinematic viscosity and saline diffusion coefficient, 
g is the acceleration due to gravity, A is the stratification length-scale, and p is the total density of the 
liquid. 

Eliminating all the unknowns from (1.1) apart from Uz and introducing the vertical liquid particle 
displacement h by the formula % = i)h/Ot, we obtain the equation 
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- , , , ,  
 x'J 

(1.2) 

Suppose that a Cartesian system of coordinates (~, ~) is attached to the plane with the ~ axis directed 
along the plane and the ~ axis normal to it, so that the change from the (x, z) system to the (~, ~) system 
is performed by the formulae 

x = gcosq~+ ~sin~0, z = ~sinq~- ~cosq~ (1.3) 

For a monochromatic wave a/at = -ioo (which corresponds to a time dependence of the form exp 
(-/cot) whichis always omitted below), using the translational symmetry of the problem along the ~ axis, 
the general solution for the reflected field can be written in the form of a superposition of plane 
inhomogeneous waves of the form exp [i(k~ + k~O)] with real k~ and complex k~. As a result we obtain 
a dispersion equation relating k~ and k~ 

[ion- D(kg + kg)~io~-v(kg + kg)](kg + kg)+ N2(kg cos~0 + kg sin cp) 2 = 0  (1.4) 

For every real k~ ~- k Eq. (1.4) has six solutions k~ = kj(k) with numbering chosen so that the 
inequalities Im k3 > I m  k2 > Im kl > 0 and Im k6 < Im k5 < Im k4 < 0 are satisfied. Direct calculations 
show that when k ~ 0 the roots of Eq. (1.4) form two triplets with imaginary parts of opposite sign. 
This assertion also holds for all values of k. Indeed, if any of the roots kj changes the sign of its imaginary 
part at some finite k =/Co, then it follows from (1.4) that ~ +/fl0 = 0, which is a contradiction 

In an ideal (inviscid) liquid without saline diffusion the b6undary conditions at the rigid plane" consist 
of the vanishing of the normal component of the total velocity, and the differential equation describing 
that the wave motion is of second order. This enables us to represent the reflected wave in the form 

h = ~ B(k)ei(g+ikIDdk 

with a single amplitude function B(k) which should be determined from the boundary conditions [7]. 
Here and below, unless otherwise stated, integration is performed from -oo to +oo. 

In the two-dimensional formulation of the problem for a viscous liquid with saline diffusion three 
scalar boundary conditions appear. They can be satisfied if the reflected field has three independent 
amplitude functions 

h = ~ Bj(k)ei(g+ikJ~)dk (1.5) 

Summation is always performed fromj -- 1 to j = 3, and the numbering of the roots ks of Eq. (1.4) has 
been given above. The amplitudes Bl(k), B2(k) and B3(k) should be determined from the condition that 
the normal and tangential components of the total velocity and the normal component of the salinity 
gradient all vanish. 

Using the relation ~2 = - /o~ and the third equation from (1.1) we find the velocity component ~x, 
and then we determine the salinity s from the fourth equation in (1.1). The velocity components (~x, 
%) are coupled to the components (~ ,  x~) by the same relation (1.3) as for the coordinates, and so we 
finally obtain 

X~g=-i¢o~ i kjB-L(k)eiCg+k:{)dk ' .UC tCO~.~ kBj(k) ~j) =" ~ ei(~+kS~)dk (1.6) 

s=-~Y~i~ Bj(k)¥s ei(g+kSg)dk' ~j=kcosq~+kjsincp, yj=ico-D(k2 +k~) 

If the distribution of velocity and salinity in the beam incident on the plane is given by ~0~(~, ~) and 
~0~(~, ~), and So(k, ~) then the boundary conditions given above lead to a system of equations for finding 
the amplitudes B.(k) Performing an inverse Fourier transform we obtain a linear algebraic system for 

. J " 

the Bj(k) which, on solving, we obtain 
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= 13;t Y., A(k) (1.7) 

Here  

= - - !  F2=- 2tarot j+oc( ,0)e_ Ca 
^ j aso( ,o) 

All = - k ( k  n - k m){[i(O - D ( k  2 - knk m )]k cos Ip + (i03 - D k  2 ) (k  n + k m ) sin ¢p} 

Ai2 = knk,.  ( k n - k m )[[ / to - D (  k 2 - knk m ) ] sin tp + D k (  k n + k m ) c o s  q>] (1.8) 

Ai3 = k(k,,, - k, , , )[/ tO- D(k 2 + k 2)1 [i to- D ( k  2 + k2,, )1 

A = -k(k l t  - k 2 )(k 2 - k 3 Xk 3 - k I )((/to - D k  2 )[/tO - D(k 2 - klk  2 - k2k 3 - k3k I )]sin ~0 + 

+Dk[( i to  - D k  2 )(k I + k 2 + k 3) + D k  I k2k 3 ] cos q~} 

and permutations of (i, n, m) are equivalent to the cyclic permutation (1, 2, 3). 
Relations (1.5) and (1.7), (1.8) completely solve the problem of the reflection of internal wave beams 

at a rigid plane is a viscous liquid with saline diffusion. 

2. ANALYSIS  OF T H E  S T R U C T U R E  OF THE S O L U T I O N  

To explain the phlpaical meaning of the terms occurring in solution (1.5), we must solve the dispersion 
equation (1.4) and find the complex wave numbers k l  (k ) ,  k2(k) and k3(k ). In the general case these roots 
cannot be found analytically because of the high (sixth) degree of Eq. (1.4), but for small values of the 
viscosity and diffusion coefficient one can use standard methods [11] to obtain the first terms of their 
asymptotic expansions 

i(v + D ) k  3 

k t = - k  ctg(q> + 0) + 2 N cos 0 sin 4 (~o + 0) (2.1) 

k2 =( ' l ' l+i~N21sin20-s in2qf l ]  ~2' k3 = 1 + i [  ~ -~ ' 1 )~2  [.vDJ 

= to(v + D) + [to 2 (v - D) 2 + 4vDN 2 sin 2 9] )~ (2.2) 

The upper sign in (2.1) is used when k > 0 and the lower sign when k < 0, the plus or minus sign in 
the second of formulae (2.1) is the same as the sign of the difference sin20 - sinZ~p, and O = arcsin(o/ 
N) is the angle of the internal wave beam to the horizontal. For propagating waves 0 < o/N < 1 and, 
consequently, 0 < 0 < x/2. 

The first term in the summation (1.5) can be represented using (2.1) in the form 

+'* [ (v+  D)lkl3 ~ ]dk (2.3) 
hi =_,.I B l ( k ) e x p { i k [ ~  +~c tg (cp+O)]}exp  - 2NcosOsin40p+O)j 

Integrals of  this JForm describe [1, 3] a diverging beam of interval waves whose transverse shape is 
governed by the spectral function B l ( k ) .  In this problem the degree of divergence of such a beam is 
governed by the stun o f  kinetic coefficients v + D ,  unlike the purely viscous case where D = 0, so that 
when there is saline diffusion the beam spreads out more rapidly. 

The second and l:hird terms in (1.5), taking relations (2.2) into account, acquire the form 
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hj=exd+ i~']exn(- ~-'~--I f Bj(k)ei*~dk, j=2,3 "t, ~±)-rt L±) 

It is clear that the reflected field is a product of oscillating and exponentially damped functions of  
with a function of  ~ determined by the shape of the beam incident on the plane. This enables us to 
interpret the second and third terms in the summation [6] as boundary layers described by spatial scales 
k+ = 1/lm k2 and L2 = 1/Ira k3. Introducing the dissipative spatial scales [12] 

/v = (v I N) ~, 1 n = (DI N) ~ (2.4) 

we can write 

~,+ = klsin 2 tO - sin 2 el -~  , ~._ = 2lvl n I Z, 

E(l  l 12si°20'4 l ,s'°2"l }" ,25, 
Comparison of  7t+ and ~ shows that the inequality L+ I> L_ is always satisfied, with equality only 

achieved when v = D and sin to = 0 simultaneously, i.e. with a horizontal bottom. In the other cases 
the scales differ, and the difference can be very great. In the frequently encountered case when one of 
the kinetic coefficients substantially exceeds the other (for example, v -> D), we can obtain much simpler 
expressions for the scales ~+ and K_ from (2.5) 

Z,+ =/v(2sin0/Isin 2 tO - sin 2 01) ~ ,  ~._ = to(2 / sin0) ½ (2.6) 

i.e. one of the boundary layers is exclusively associated with the presence of  viscosity, and the other 
with the presence of saline diffusion. In the opposite case v ,~ D one must exchange the positions of  
/v and ID in formulae (2.6). 

It is clear from (2.1) and (2.2) that both the wave field and one of the boundary layers have a singularity 
when sin tO = _+sin 0. This singularity is of a fundamental nature when there is no viscosity and saline 
diffusion (where there are in fact no boundary layers) and expresses itself in an infinite transverse 
contraction of the reflected wave beam and an infinite increase in its amplitude when the plane coincides 
with the direction of  propagation of the beam. 

Note, however, that in Eqs (1.1) the kinetic coefficients are in front of the highest order spatial 
derivatives. Hence, as the field gradients increase in the reflected beam the effects of viscosity and 
diffusion come into the foreground. We can therefore expect that the consistent inclusion of these effects 
will remove these singularities. Indeed, putting sin tO = IX sin O, Ix = _+ 1 in Eq. (1.4), we obtain its solution 

k I = -lak ctg 20 + iix(v + D)k 3 sin 0 
Nsin5 20 , lak>0 

k,=~/'3+------~/(-K) ~j, lak<0; K= 2tak/vc°so (2.7) 
2 v + D  

k2=iX )~, ~ k > 0 ;  k2=-"f3+i (-K) ~ Ixk<0 
2 

..['(v + D)Nsin 0"] )~ 

It is dea r  that although the functions kj(k) given by formulae (2.7) are more complex than (2.1) and 
(2.2), there is no singularity when sin to = _+sin 0. Here the spatial structure of one of  the boundary 
layers has a complicated nature (not being a simple exponential), depending on how the beam is incident 
on the plane, At the same time the structure of the other boundary layer continues to be described by 
an exponential function for all position angles of  the reflecting plane. 
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3. REFLECTION OF A WAVE BEAM RADIATED BY A POINT MASS 
SOURCE 

As an example, consider a wave beam radiated by a point mass source located at the point x = L 
cos 0,z = -L sin 0, where L is the distance from the source to the plane along the direction of propagation 
of the beam. To fix our ideas, we will consider a beam propagating to the left and upwards. Here the 
angle ~ lies in the range -0  < q~ < ~ - 0, otherwise the beam will simply not be incident on the plane. 
In a rectangular Cartesian system of coordinates (p, q) with the q axis directed along the beam, and 
related to the (x, z) system by the formulae 

x = - ( q  - L) cos 0 -  p sin 0, z = (q - L) sin 0 -  p cos 0 (3.1) 

the vertical displao~.ment of particles in such a beam can be expressed by the integral [3] 

(v + D)k3q ]dk (3.2) 
ho(p,q)= i exp ikp 2Ncos0 J 

Changing to the (,~, ~) system of coordinates using (1.3) and (3.1), and then integrating in the complex 
x plane, from (3.2) we obtain 

1 
h°(g '~)  = - s in(q)+0)  ~c 

a('c)eigei~l(~Kd'c a('¢) = exp[A(x)L] 

-'C COS(q) + 0) + A('g) A('C) ffi (v + D)'g 3 (3.3) 
"¢1 (~)= sin(9+0) ' 2Ncos0sin3(q)+ 0) 

where the contour of integration C is given by the parametric equation 

i(v+D)k3c°s(¢#+O) k ~ [0,+oo] 
x(k)=-ksin((p+O) 2Ncos0 ' (3.4) 

Deforming the contour C into the contour Im x = 0 we obtain an expression for the vertical 
displacement of a particle in the incident beam in (g, ~) coordinates 

h°(~'~) = sin(q)+0)' = _,I a('O ei~ei~ltO~d'c (3.5) 

Using the relations ~z = -/o~0, ~ / 0 ~  + ~ / 0 ~  = 0 and the relation between the components (% 
~z) and (~g, ~g), which is identical with relation (1.3) between the coordinates (x, z) and (g, ~), we find 
the velocity components 

(3.6) 

From the third equation of system (1.1) we find the salinity in the incident beam 

i¢o o a(¢) eigei~t(~Kd~ (3.7) 
So ffi A s i n ( q ) + 0 )  ~ .  /tO- D(~ 2 + ~ ) )  

Substitution of (%6) and (3.7) into (1.7) and (1.8), taking into account the approximate solutions (2.1) 
and (2.2), enables us to find the spectral functions of the reflected wave field Bl(k) and the boundary 
layers B2(k) and B~(k) 
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O(-k) expr Bl(k)-- sin(cp- 0) [ 

B2 (k) = b(t2, k. )Bm (t),  

(v + D)k3 L ] 

= bik3, t2)g  (k) 

2sinq~cos0 y(io~- Dx 2) 
b(x,  y) w . 

sin(q~ + O) (x  - y)(i¢o + Dxy) 

where O is the Heaviside unit function. 
Substituting (3.8) into (1.5) we obtain an expression for the reflected wave field 

sin(q~-O) _.. LzN cos~sm" re+ e)J 

(3.8) 

(3.9) 

When --0 < q~ < 0 the reflected beam will propagate to the left and downwards, and when 0 < q~ < 
- 0, it will propagate to the fight and upwards. 
We introduce a rectangular system of coordinates (p, q) with q axis directed along the reflected beam 

and related to the (x, z) system by the relations 

x = :t=(psinO + qcosO), z = + ( p e o s O - q s i n O )  (3.10) 

where the upper signs are taken for the first case and the lower signs for the second. We then obtain 

dk, ]sin(~° + 0)1 (3.11) 

Thus the beam reflected from the plane is equivalent to a beam produced by the original source 
situated behind the plane at a distance L '  along the direction of propagation of the reflected beam. 
Because the phases of beams propagating upwards radiated by a point mass source are opposite to the 
phases of beams propagating downwards, then when --0 < q~ < 0 the phase of the reflected beam is 
opposite to the phase of the incident beam, whereas when 0 < ¢p < n - 0 the incident and reflected 
beams are in phase. At the critical angle q~ = 0, when the reflected beam propagates along the reflecting 
plane, its phase structure is changed. 

The above analysis shows that viscosity and diffusion affect the nature of the reflection of internal 
wave beams by being associated with the formation of a split boundary flow on the reflecting surface 
and by limiting the coefficient of geometrical contraction at the critical angles. 

In the boundary flow, which is formed at the reflecting surface, the scales of spatial variation of the 
velocity and salinity (density) are always different if the coefficient of molecular momentum transfer 
and mass transfer differ (i.e. a medium with distsersion). The ratio of the scales also depends on 
the geometry of the problem and is given by formulae (2.4) and (2.5). Even in the degenerate case, 
when the coefficients of kinematic viscosity and diffusion are equal, the typical thicknesses of the density 
and dynamic boundary layers differ from one another except for the case of a horizontal reflecting 
surface. 
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